.wmy wouldn't everywhere use geomatch HumanAI liveliood refugees -related AIverygood KC3.dev, worldclassLLM, EconomistWomen.com, AIverygood
Play AI.Games ---Architect Intelligence your brain needs most : update with AI gamma beta alpha tours;
help compile each year's AIverygood.com
"Worlds" published by Melinda Gates- Moment of Lift with Flatiron Books, original nonfiction by visionaries AISdgs 5 : working to unlock a more equal world for women and girls
advanced stuff value expsai.com 33 years of ignoring valuetrue exp maths is a shame- will 23-24 be the year that ai maths is used to correctly map sustainability features - exponential not linear; multiplicative not ad; at its most natural borderless not siloised by fake media or false competition

Monday, December 31, 2018

Stanfird AI corrects stanfird plato's biggest mistake


to say ai began 1956 at Dartmouth is utter balderdash

ai was begun bu neumann eistein turing and papers on neural networks; while neumann was dying in dc hospital in 1956 he competed computer and the brain a street mile ahead of whatever went on at dartmouth 1956- you can also see the economist's 1951 discussion the future of computers - as von neumann spent moats of 1951 training any economics journalists who wanted to survey exponential futures wherever people's got first access to at least 100 times more tech per decade

Plato's Artificial Intelligence up to 2018

First published Thu Jul 12, 2018

Artificial intelligence (AI) is the field devoted to building artificial animals (or at least artificial creatures that – in suitable contexts – appear to be animals) and, for many, artificial persons (or at least artificial creatures that – in suitable contexts – appear to be persons).[1] Such goals immediately ensure that AI is a discipline of considerable interest to many philosophers, and this has been confirmed (e.g.) by the energetic attempt, on the part of numerous philosophers, to show that these goals are in fact un/attainable. On the constructive side, many of the core formalisms and techniques used in AI come out of, and are indeed still much used and refined in, philosophy: first-order logic and its extensions; intensional logics suitable for the modeling of doxastic attitudes and deontic reasoning; inductive logic, probability theory, and probabilistic reasoning; practical reasoning and planning, and so on. In light of this, some philosophers conduct AI research and development as philosophy.

In the present entry, the history of AI is briefly recounted, proposed definitions of the field are discussed, and an overview of the field is provided. In addition, both philosophical AI (AI pursued as and out of philosophy) and philosophy of AI are discussed, via examples of both. The entry ends with some de rigueur speculative commentary regarding the future of AI.

1. The History of AI

The field of artificial intelligence (AI) officially started in 1956, launched by a small but now-famous DARPA-sponsored summer conference at Dartmouth College, in Hanover, New Hampshire. (The 50-year celebration of this conference, AI@50, was held in July 2006 at Dartmouth, with five of the original participants making it back.[2] What happened at this historic conference figures in the final section of this entry.) Ten thinkers attended, including John McCarthy (who was working at Dartmouth in 1956), Claude Shannon, Marvin Minsky, Arthur Samuel, Trenchard Moore (apparently the lone note-taker at the original conference), Ray Solomonoff, Oliver Selfridge, Allen Newell, and Herbert Simon. From where we stand now, into the start of the new millennium, the Dartmouth conference is memorable for many reasons, including this pair: one, the term ‘artificial intelligence’ was coined there (and has long been firmly entrenched, despite being disliked by some of the attendees, e.g., Moore); two, Newell and Simon revealed a program – Logic Theorist (LT) – agreed by the attendees (and, indeed, by nearly all those who learned of and about it soon after the conference) to be a remarkable achievement. LT was capable of proving elementary theorems in the propositional calculus.[3][4]

Though the term ‘artificial intelligence’ made its advent at the 1956 conference, certainly the field of AI, operationally defined (defined, i.e., as a field constituted by practitioners who think and act in certain ways), was in operation before 1956. For example, in a famous Mind paper of 1950, Alan Turing argues that the question “Can a machine think?” (and here Turing is talking about standard computing machines: machines capable of computing functions from the natural numbers (or pairs, triples, … thereof) to the natural numbers that a Turing machine or equivalent can handle) should be replaced with the question “Can a machine be linguistically indistinguishable from a human?.” Specifically, he proposes a test, the “Turing Test” (TT) as it’s now known. In the TT, a woman and a computer are sequestered in sealed rooms, and a human judge, in the dark as to which of the two rooms contains which contestant, asks questions by email (actually, by teletype, to use the original term) of the two. If, on the strength of returned answers, the judge can do no better than 50/50 when delivering a verdict as to which room houses which player, we say that the computer in question has passed the TT. Passing in this sense operationalizes linguistic indistinguishability. Later, we shall discuss the role that TT has played, and indeed continues to play, in attempts to define AI. At the moment, though, the point is that in his paper, Turing explicitly lays down the call for building machines that would provide an existence proof of an affirmative answer to his question. The call even includes a suggestion for how such construction should proceed. (He suggests that “child machines” be built, and that these machines could then gradually grow up on their own to learn to communicate in natural language at the level of adult humans. This suggestion has arguably been followed by Rodney Brooks and the philosopher Daniel Dennett (1994) in the Cog Project. In addition, the Spielberg/Kubrick movie A.I. is at least in part a cinematic exploration of Turing’s suggestion.[5]) The TT continues to be at the heart of AI and discussions of its foundations, as confirmed by the appearance of (Moor 2003). In fact, the TT continues to be used to define the field, as in Nilsson’s (1998) position, expressed in his textbook for the field, that AI simply is the field devoted to building an artifact able to negotiate this test. Energy supplied by the dream of engineering a computer that can pass TT, or by controversy surrounding claims that it has already been passed, is if anything stronger than ever, and the reader has only to do an internet search via the string

turing test passed

to find up-to-the-minute attempts at reaching this dream, and attempts (sometimes made by philosophers) to debunk claims that some such attempt has succeeded.

Returning to the issue of the historical record, even if one bolsters the claim that AI started at the 1956 conference by adding the proviso that ‘artificial intelligence’ refers to a nuts-and-bolts engineering pursuit (in which case Turing’s philosophical discussion, despite calls for a child machine, wouldn’t exactly count as AI per se), one must confront the fact that Turing, and indeed many predecessors, did attempt to build intelligent artifacts. In Turing’s case, such building was surprisingly well-understood before the advent of programmable computers: Turing wrote a program for playing chess before there were computers to run such programs on, by slavishly following the code himself. He did this well before 1950, and long before Newell (1973) gave thought in print to the possibility of a sustained, serious attempt at building a good chess-playing computer.[6]